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Abstract. In the present article, we derive several new weighted dynamic
inequalities for monotone functions involving kernels, some of which are
the Hardy-type inequalities. The established inequalities are character-
ized by appropriate relations for the accompanying weight functions.
Our results are time scale extensions of several classical weighted in-
equalities known from the literature. As an application, we obtain the
corresponding discrete weighted inequalities for monotone sequences,
which are essentially new.
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1. Introduction

Let u and v be given weight functions, i.e., functions which are measurable
and positive almost everywhere in (a, b), −∞ ≤ a < b ≤ ∞. In 1990, Opic
and Kufner [12], proved that if 1 < p ≤ q < ∞, then the inequality[∫ b

a

u (x)
(∫ x

a

f(t)dt

)q

dx

] 1
q

≤ C

(∫ b

a

υ (x) fp(x)dx

) 1
p

, (1.1)

holds for all nonnegative measurable functions f , if and only if holds the
condition

K = sup
a<x<b

(∫ b

x

u(t)dt

) 1
q (∫ x

a

υ1−p′
(t)dt

) 1
p′

< ∞,

where p′ = p
p−1 . In addition, the estimate for the constant C appearing on

the right-hand side of (1.1) is given by

K ≤ C ≤
(

1 +
q

p′

) 1
q

(
1 +

p′

q

) 1
p′

K. (1.2)
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The inequality (1.1) is usually referred to as the weighted Hardy inequality.
The special case of p = q, a = 0, b = ∞ and v(x) = 1, u(x) = x−p reduces
(1.1) to the classical Hardy inequality with a sharp constant C = (p′)p.

In 1991, Stepanov [18] proved that if 0 < p ≤ 1, p ≤ q < ∞ and k is a
nonnegative measurable kernel, then the Hardy-type inequality[∫ ∞

0

u (x)
(∫ ∞

0

k(x, y)f(y)dy

)q

dx

] 1
q

≤ C

(∫ ∞

0

υ (x) fp(x)dx

) 1
p

, (1.3)

holds for all nonnegative nondecreasing measurable functions f , if and only
if

L = sup
t>0

(∫ ∞

t

υ (x) dx

)− 1
p

[∫ ∞

0

u (x)
(∫ ∞

t

k(x, y)dy

)q

dx

] 1
q

< ∞.

In addition, if the constant C in (1.3) is the least possible, then L = C.
Moreover, Heinig and Maligranda [10] proved that if 0 < p ≤ 1, p ≤ q <

∞ and k is a nonnegative measurable kernel, then the inequality[∫ ∞

0

u (x)
(∫ ∞

0

k(x, t)f(t)dt

)q

dx

] 1
q

≤ C

(∫ ∞

0

υ (x) fp(x)dx

) 1
p

, (1.4)

holds for all nonnegative nonincreasing measurable functions f , if and only
if the inequality[∫ ∞

0

u (x)
(∫ s

0

k(x, t)dt

)q

dx

] 1
q

≤ C

(∫ s

0

υ (x) dx

) 1
p

,

holds for all s > 0. In addition, they also proved that if 0 < p ≤ 1 ≤ q and
k1, k2 are nonnegative measurable kernels, then the inequality[∫ ∞

0

u(x)
(∫ ∞

0

k1(x, t)f(t)dt

)q

dx

] 1
q

≤ C

[∫ ∞

0

v(x)
(∫ ∞

0

k2(x, t)f(t)dt

)p

dx

] 1
p

, (1.5)

holds for all nonnegative nonincreasing measurable functions f and a constant
C > 0, if and only if the relation[∫ ∞

0

u(x)
(∫ s

0

k1(x, t)dt

)q

dx

] 1
q

≤ C

[∫ ∞

0

v(x)
(∫ s

0

k2(x, t)dt

)p

dx

] 1
p

,

holds for all s > 0. In 2000, Barza et al. [3] proved that if 0 < p ≤ q < ∞,
1 ≤ q < ∞ and k is a nonnegative measurable kernel, then the inequality[∫ ∞

0

u(x)fq(x)dx

] 1
q

≤ C

[∫ ∞

0

v(x)
(∫ ∞

0

k(x, y)f(y)dy

)p

dx

] 1
p

, (1.6)

holds for all nonnegative nonincreasing measurable functions f , where the
constant C is defined by

C = sup
t>0

[∫ t

0

u(x)dx

] 1
q

[∫ ∞

0

v(x)
(∫ t

0

k(x, y)dy

)p

dx

]− 1
p

< ∞.
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For the reader’s convenience, the above integral inequalities (1.3)–(1.6) will
be referred to as the weighted inequalities with kernels.

In the last few decades, numerous authors have been interested in estab-
lishing the corresponding discrete analogs of Lp(R) -bounds in various fields
of analysis, and as a result, this subject became topic of ongoing research.
The crucial reason for this upsurge of interest in discrete case is due to the
fact that discrete operators may even behave differently from their continuous
counterparts. But the main challenge in establishing discrete analogs is that
there are no general methods to study these questions on lp(N). Therefore,
these methods have to be developed starting from the basic definitions. In
some cases, it is possible, almost straightforward, to translate or adapt the
objects and results from the continuous setting to the discrete setting or vice
versa. However, in some other cases, this problem is far from being trivial, and
lp-bounds for discrete analogs of more complicated operators such as singular
and fractional operators, maximal Radon transforms (involving integration
over a submanifold, or family of submanifolds), are not implied by the corre-
sponding continuous results, and moreover, they are resistant to conventional
methods. In particular, related to our previous discussion about the weighted
Hardy-type inequalities with kernels, Bennett and Grosse-Erdmann [4], es-
tablished the discrete version of relation (1.4). More precisely, they proved
that if 0 < p ≤ q < ∞, p ≤ 1 and (an,k), (vn) are nonnegative sequences,
then the inequality[ ∞∑

n=1

( ∞∑
k=1

an,kxk

)q] 1
q

≤ C

( ∞∑
n=1

vnxp
n

) 1
p

, (1.7)

holds for all nonnegative nonincreasing sequences (xn), if and only if[ ∞∑
n=1

(
m∑

k=1

an,k

)q] 1
q

≤ C

(
m∑

n=1

vn

) 1
p

, for all m ∈ N,

where the constant C does not depend on a sequence (xn).
On the other hand, in the recent years, the study of dynamic inequalities

on time scales has received a lot of attention and became an interesting
topic in pure and applied mathematics. The general idea is to establish the
corresponding dynamic inequality, where the domain of an unknown function
is the so-called time scale T, which may be an arbitrary closed subset of the
real numbers R. These dynamic inequalities cover the classical continuous
and discrete inequalities as special cases when T = R and T = N. Besides,
some new classes of inequalities are also obtained for various time scales such
as T = hN, h > 0, T = qN for q > 1, etc. For a comprehensive inspection of
recent results on dynamic inequalities on time scales, the reader is referred
to monographs [1,2,7], the papers [5,6,9,11,14–16], and references therein.

The main objective of the present paper is a study of the weighted
inequalities with kernels on time scales, some of which are of the Hardy type
(see, e.g., [2,11,13–17] and references therein). In particular, Saker et al. [15],
established the time scale version of the weighted Hardy-type inequality (1.1),
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obtained by Opic and Kufner [12], which asserts that the dynamic inequality
[∫ b

a

u (x)

(∫ σ(x)

a

f(t)Δt

)q

Δx

] 1
q

≤ C

(∫ b

a

υ (x) fp(x)Δx

) 1
p

, (1.8)

where 1 < p ≤ q < ∞, holds for all nonnegative rd-continuous functions f
on [a, b]

T
, a, b ∈ T, if and only if

sup
a<x<b

(∫ b

x

u(t)Δt

) 1
q

(∫ σ(x)

a

υ1−p′
(t)Δt

) 1
p′

= K < ∞, p′ =
p

p − 1
.

(1.9)
Moreover, the estimate for the constant C appearing on the right-hand side
of (1.8) is given by (1.2). It should be noticed here that the condition (1.9)
provides a characterization of the weight functions u and v for which the
inequality (1.8) holds.

The natural question that arises from the previous discussion is whether
it is possible to establish some new characterizations of the corresponding
weight functions, so that dynamic versions of the weighted inequalities (1.5)
and (1.6) hold. In the present paper, our aim is to give an answer to this ques-
tion. In particular, we will establish a relation between the weight functions
λ and ϕ (nonnegative rd-continuous functions defined on [a,∞)T), which will
ensure that the inequality[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

≤ C

[∫ ∞

a

ϕ(x)
(∫ ∞

a

k2(x, t)f(t)Δt

)p

Δx

] 1
p

,

holds for all nonnegative nonincreasing rd-continuous functions f , provided
that 0 < p ≤ 1 ≤ q and k1, k2 are nonnegative kernels defined on [a,∞)T ×
[a,∞)T. In addition, we will also establish a relation between the weight
functions λ and ϕ, such that the inequality[∫ ∞

a

λ(x)fq(x)Δx

] 1
q

≤ C

(∫ ∞

a

ϕ(τ)
[∫ ∞

a

k(τ, x)f(x)Δx

]p

Δτ

) 1
p

,

holds for all nonnegative nonincreasing rd-continuous functions f , provided
that 0 < p ≤ q < ∞, 1 ≤ q < ∞, and k is a nonnegative kernel defined on
[a,∞)T × [a,∞)T.

The paper is organized as follows. After this introductory part, in Sect. 2,
we present some basic definitions and facts in the theory of time scales, and
prove basic lemmas that will be needed in the proofs of our main results. In
Sect. 3, we prove our main results, i.e., we establish several new dynamic in-
equalities with kernels for a class of monotone functions. If T = R, our results
provide characterizations of inequalities (1.5) and (1.6) proved by Heinig and
Maligranda [10], and Barza et al. [3]. On the other hand, if T = N, it turns
out that our results are essentially new.
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2. Preliminaries and Basic Lemmas

In this section, we present some basic notation, definitions and properties con-
cerning the calculus on time scales, and for more details, the reader is referred
to monographs [7,8] by Bohner and Peterson, which provide a comprehen-
sive insight into the time scale calculus. In addition, we also give several basic
lemmas that will be used in the proofs of our main results.

A time scale T is an arbitrary nonempty closed subset of real numbers
R. Without loss of generality, we assume that supT = ∞, and we define the
time scale interval [a, b]T by [a, b]T := [a, b] ∩ T. For t ∈ T, the forward jump
operator σ : T → T is defined by σ(t) := inf{s ∈ T : s > t}, while the
backward jump operator ρ : T → T is defined by ρ(t) := sup{s ∈ T : s < t}.
The point t is said to be right-scattered if σ(t) > t, respectively, left-scattered
if ρ(t) < t . The point t is called right-dense if t < supT and σ(t) = t,
respectively, left-dense if t > inf T and ρ(t) = t . The graininess function
μ : T → [0,∞) is defined by μ(t) = σ(t) − t. For an arbitrary function
f : T → R, fσ(t) stands for a composition f(σ(t)).

A function f : T → R is called rd-continuous if it is continuous at each
right-dense point and if its left-sided limits exist at each left-dense point in T.
The set of all such rd-continuous functions is denoted by Crd(T) = Crd(T,R).
We will also utilize the product and quotient rules for delta derivative fΔ

of the function f (for more details, see [7]). Namely, if f and g are delta
differentiable functions on T , then the product fg is delta differentiable on
T. Moreover, if ggσ �= 0, then the quotient f/g is also delta differentiable on
T, so we have

(fg)Δ = fgΔ + fΔgσ = fΔg + fσgΔ and
(

f

g

)Δ

=
fΔg − fgΔ

g gσ
.

Throughout this paper, we deal with a delta integral which can be de-
fined as follows: if GΔ(t) = g(t), then the Cauchy delta integral of g is
defined by

∫ t

a
g(x)Δx := G(t) − G(a). It can be shown that if g ∈ Crd(T),

then the Cauchy integral G(t) :=
∫ t

t0
g(x)Δx, t0 ∈ T, exists and satisfies

GΔ(t) = g(t), t ∈ T (see [7]). An infinite integral is defined as
∫ ∞

a
f(x)Δx :=

limb→∞
∫ b

a
f(x)Δx, while the integration on discrete time scales is given by∫ b

a
g(t)Δt =

∑
t∈[a,b) μ(t)g(t). In the case when T = R, we have σ (t) = ρ (t) =

t, μ (t) = 0, fΔ = f ′, and
∫ b

a
f (t)Δt =

∫ b

a
f (t) dt, while for T = Z, we have

σ (t) = t + 1, ρ (t) = t − 1, μ (t) = 1, fΔ = Δf, and
∫ b

a
f (t) Δt =

∑b−1
t=a f (t) .

Further, the integration by parts formula on time scales reads∫ b

a

uΔ(t)vσ(t) Δt = u(t)v(t)|ba −
∫ b

a

u(t)vΔ(t)Δt. (2.1)

We will utilize the well-known Hölder inequality in the time scale setting,
which asserts that if 1/γ + 1/ν = 1, γ > 1, then

∫ b

a

f(t)g(t)Δt ≤
(∫ b

a

fγ(t)Δt

) 1
γ

(∫ b

a

gν(t)Δt

) 1
ν

, (2.2)
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holds for f , g ∈ Crd ([a, b]T,R+). The inequality (2.2) is reversed if 0 < γ < 1
or γ < 0.

Finally, in the proofs of our results, we will also utilize a time scale ver-
sion of the Fubini theorem. Let (Ω,M, μΔ) and (Λ,L, λΔ) be finite-dimensional
time scale measure spaces. We define the product measure space (Ω×Λ,M×
L, μΔ × λΔ), where M × L is the product σ−algebra generated by {E × F :
E ∈ M, F ∈ L} and (μΔ × λΔ) (E × F ) = μΔ(E)λΔ(F ).

Theorem 2.1. [5, Theorem 1.1] If f : Ω × Λ → R is μΔ × λΔ -integrable
function and if ϕ(y) =

∫
Ω

f(x, y)Δx for a.e. y ∈ Λ, ψ(x) =
∫
Λ

f(x, y)Δy for
a.e. x ∈ Ω, then ϕ is λΔ-integrable on Λ, ψ is μΔ-integrable on Ω, and∫

Ω

Δx

∫
Λ

f(x, y)Δy =
∫

Λ

Δy

∫
Ω

f(x, y)Δx. (2.3)

Now, we prove some basic lemmas that will be utilized in establish-
ing our main results. If nothing else is explicitly stated, we assume that all
functions are nonnegative, rd-continuous, delta differentiable and delta inte-
grable on [a,∞)T. Furthermore, the integrals considered are assumed to be
convergent.

Lemma 2.1. Let T be a time scale with a ∈ T, and let f and φ be nonnegative
rd-continuous functions defined on [a,∞)T. If limt→∞ f(t) = 0, then holds
the relation ∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

φ(τ)Δτ

)
Δt =

∫ ∞

a

f(t)φ(t)Δt. (2.4)

Proof. Applying the integration by parts to the term∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

φ(τ)Δτ

)
Δt,

with

uΔ(t) = −fΔ(t) and vσ(t) =
∫ σ(t)

a

φ(τ)Δτ = Φσ(t),

we get∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

φ(τ)Δτ

)
Δt = −f(t)Φ(t)|∞a +

∫ ∞

a

f(t)ΦΔ(t)Δt,

where Φ(t) =
∫ t

a
φ(τ)Δτ. Now, since limt→∞ f(t) = 0 and Φ(a) = 0, it follows

that∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

φ(τ)Δτ

)
Δt =

∫ ∞

a

f(t)ΦΔ(t)Δt =
∫ ∞

a

f(t)φ(t)Δt,

which represents the desired inequality (2.4). �
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Lemma 2.2. Assume that T is a time scale with a ∈ T, and let f and φ be
nonnegative rd-continuous functions defined on [a,∞)T. If the function f is
bounded and f(a) = 0, then holds the relation∫ ∞

a

fΔ(t)
(∫ ∞

t

φ(τ)Δτ

)
Δt =

∫ ∞

a

φ(t)fσ(t)Δt. (2.5)

Proof. Integrating by parts the term∫ ∞

a

fΔ(t)
(∫ ∞

t

φ(τ)Δτ

)
Δt,

with u(t) =
∫ ∞

t
φ(τ)Δτ and vΔ(t) = fΔ(t), it follows that∫ ∞

a

fΔ(t)
(∫ ∞

t

φ(τ)Δτ

)
Δt = u(t)f(t)|∞a −

∫ ∞

a

uΔ(t)fσ(t)Δt.

Now, since the function f is bounded, taking into account that limt→∞ u(t) =
0 and f(a) = 0, we have∫ ∞

a

fΔ(t)
(∫ ∞

t

φ(τ)Δτ

)
Δt = −

∫ ∞

a

uΔ(t)fσ(t)Δt =
∫ ∞

a

φ(t)fσ(t)Δt,

which yields relation (2.5). The proof is complete. �
The previous two lemmas will be utilized in establishing time scale ex-

tensions of the inequality (1.5). On the other hand, the following inequality
will be the crucial step in deriving a time scale version of the inequality (1.6).

Lemma 2.3. Let T is a time scale with a ∈ T, and let α, β ∈ Crd ([a,∞)T,R+).
If γ ≥ 1, then holds the inequality[∫ ∞

a

α(x)

(∫ σ(x)

a

β(τ)Δτ

)γ

Δx

] 1
γ

≤
∫ ∞

a

β(x)
(∫ ∞

x

α(s)Δs

) 1
γ

Δx.

(2.6)

Proof. Let F (x) =
∫ x

a
β(τ)Δτ. Then, the left-hand side of (2.6) can be rewrit-

ten in the following form:∫ ∞

a

α(x)

(∫ σ(x)

a

β(τ)Δτ

)γ

Δx =
∫ ∞

a

α(x) [F σ(x)]γ−1
F σ(x)Δx. (2.7)

Furthermore, integrating by parts the right-hand side of (2.7) with

uΔ(x) = α(x) [F σ(x)]γ−1 and vσ(x) = F σ(x),

it follows that∫ ∞

a

α(x) [F σ(x)]γ−1
F σ(x)Δx = u(x)F (x)|∞a −

∫ ∞

a

u(x)β(x)Δx,

where u(x) = − ∫ ∞
x

α(s) [F σ(s)]γ−1 Δs. Clearly, since limx→∞ u(x) = 0 and
F (a) = 0, we obtain the relation∫ ∞

a

α(x) [F σ(x)]γ−1
F σ(x)Δx =

∫ ∞

a

β(x)
(∫ ∞

x

α(s) [F σ(s)]γ−1 Δs

)
Δx.

(2.8)
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Now, taking into account (2.7) and (2.8), we have

∫ ∞

a

α(x)

(∫ σ(x)

a

β(τ)Δτ

)γ

Δx

=
∫ ∞

a

β(x)
(∫ ∞

x

α(s) [F σ(s)]γ−1 Δs

)
Δx

=
∫ ∞

a

β(x)
(∫ ∞

x

α
1
γ (s)α

γ−1
γ (s) [F σ(s)]γ−1 Δs

)
Δx. (2.9)

On the other hand, applying the Hölder inequality with nonnegative expo-
nents γ and γ/(γ − 1) to the term

∫ ∞

x

α
1
γ (s)α

γ−1
γ (s) [F σ(s)]γ−1 Δs,

we obtain the inequality

∫ ∞

x

α
1
γ (s)α

γ−1
γ (s) [F σ(s)]γ−1 Δs

≤
(∫ ∞

x

α(s)Δs

) 1
γ

(∫ ∞

x

α(s) [F σ(s)]γ Δs

) γ−1
γ

. (2.10)

Now, comparing relations (2.9) and (2.10), we obtain the inequality

∫ ∞

a

α(x)

(∫ σ(x)

a

β(τ)Δτ

)γ

Δx

≤
∫ ∞

a

β(x)
(∫ ∞

x

α(s)Δs

) 1
γ

(∫ ∞

x

α(s) [F σ(s)]γ Δs

) γ−1
γ

Δx.

(2.11)

Moreover, since x ≥ a and α, β are nonnegative functions, it follows that

∫ ∞

x

α(s) [F σ(s)]γ Δs ≤
∫ ∞

a

α(s) [F σ(s)]γ Δs,

and consequently,

(∫ ∞

x

α(s) [F σ(s)]γ Δs

) γ−1
γ

≤
(∫ ∞

a

α(s) [F σ(s)]γ Δs

) γ−1
γ

, (2.12)

since the exponent (γ −1)/γ is positive. Finally, utilizing relations (2.11) and
(2.12), we obtain the inequality
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∫ ∞

a

α(x)

(∫ σ(x)

a

β(τ)Δτ

)γ

Δx

≤
(∫ ∞

a

α(s) [F σ(s)]γ Δs

) γ−1
γ

∫ ∞

a

β(x)
(∫ ∞

x

α(s)Δs

) 1
γ

Δx

=

[∫ ∞

a

α(s)

(∫ σ(s)

a

β(τ)Δτ

)γ

Δs

] γ−1
γ ∫ ∞

a

β(x)
(∫ ∞

x

α(s)Δs

) 1
γ

Δx,

and so,[∫ ∞

a

α(x)

(∫ σ(x)

a

β(τ)Δτ

)γ

Δx

] 1
γ

≤
∫ ∞

a

β(x)
(∫ ∞

x

α(s)Δs

) 1
γ

Δx,

which represents (2.6). The proof is now complete. �

It should be noticed here that the relation (2.6) is a Minkowski-type
inequality in a time scale setting. Following the same lines as in the proof of
Lemma 2.3, we also obtain the Minkowski-type inequality which is, in some
way, complementary to (2.6).

Lemma 2.4. Let T be a time scale with a ∈ T, and let α, β ∈ Crd ([a,∞)T,R+).
If γ ≥ 1, then holds the inequality[∫ ∞

a

α(x)
(∫ ∞

x

β(t)Δt

)γ

Δx

] 1
γ

≤
∫ ∞

a

β(x)

(∫ σ(x)

a

α(s)Δs

) 1
γ

Δx.

(2.13)

Our last result in this section is a Minkowski-type inequality involving
a nonnegative kernel, which will be utilized in extending both relations (1.5)
and (1.6) to a time scale setting.

Lemma 2.5. Let T be a time scale with a ∈ T and let γ ≥ 1. If k : [a,∞)T ×
[a,∞)T → R, w, h : [a,∞)T → R are nonnegative rd-continuous functions,
then holds the inequality[∫ ∞

a

w(x)
(∫ ∞

a

h(t)k(x, t)Δt

)γ

Δx

] 1
γ

≤
∫ ∞

a

h(t)
(∫ ∞

a

w(x)kγ(x, t)Δx

) 1
γ

Δt. (2.14)

Proof. Let H be an integral operator defined by

H(x) :=
∫ ∞

a

h(t)k(x, t)Δt. (2.15)

Then, the left-hand side of the inequality (2.14) can be rewritten in the
following form:∫ ∞

a

w(x)
[∫ ∞

a

h(t)k(x, t)Δt

]γ

Δx =
∫ ∞

a

w(x)Hγ−1(x)H(x)Δx
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=
∫ ∞

a

w(x)Hγ−1(x)
(∫ ∞

a

h(t)k(x, t)Δt

)
Δx

=
∫ ∞

a

(∫ ∞

a

w(x)Hγ−1(x)h(t)k(x, t)Δt

)
Δx. (2.16)

Moreover, applying the Fubini theorem to the right-hand side of (2.16), it
follows that∫ ∞

a

(∫ ∞

a

w(x)Hγ−1(x)h(t)k(x, t)Δt

)
Δx

=
∫ ∞

a

h(t)
(∫ ∞

a

w(x)Hγ−1(x)k(x, t)Δx

)
Δt

=
∫ ∞

a

h(t)
(∫ ∞

a

w
1
γ (x)k(x, t)w

γ−1
γ (x)Hγ−1(x)Δx

)
Δt. (2.17)

Clearly, from (2.16) and (2.17), we obtain the relation∫ ∞

a

w(x)
[∫ ∞

a

h(t)k(x, t)Δt

]γ

Δx

=
∫ ∞

a

h(t)
(∫ ∞

a

w
1
γ (x)k(x, t)w

γ−1
γ (x)Hγ−1(x)Δx

)
Δt. (2.18)

Now, applying the Hölder inequality with positive exponents γ and γ/(γ−1),
to the term ∫ ∞

a

w
1
γ (x)k(x, t)w

γ−1
γ (x)Hγ−1(x)Δx,

we obtain the inequality∫ ∞

a

w
1
γ (x)k(x, t)w

γ−1
γ (x)Hγ−1(x)Δx

≤
(∫ ∞

a

w(x)kγ(x, t)Δx

) 1
γ

(∫ ∞

a

w(x)Hγ(x)Δx

) γ−1
γ

. (2.19)

Hence, comparing relations (2.18) and (2.19), it follows that∫ ∞

a

w(x)
[∫ ∞

a

h(t)k(x, t)Δt

]γ

Δx

≤
[∫ ∞

a

h(t)
(∫ ∞

a

w(x)kγ(x, t)Δx

) 1
γ

Δt

] (∫ ∞

a

w(x)Hγ(x)Δx

) γ−1
γ

.(2.20)

Finally, taking into account definition (2.15), the inequality (2.20) reduces to

(∫ ∞

a

w(x)

[∫ ∞

a

h(t)k(x, t)Δt

]γ

Δx

) 1
γ

≤
∫ ∞

a

h(t)

(∫ ∞

a

w(x)kγ(x, t)Δx

) 1
γ

Δt,

i.e., we obtain (2.14), as claimed. The proof is complete. �
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3. Main Results

In this section, we state and prove our main results, i.e., we establish time
scale versions of inequalities (1.5) and (1.6), presented in the introduction.
Similar to the classical real case, we will show that these inequalities in the
time scale setting are also characterized by appropriate relations for the cor-
responding weight functions. Moreover, the results that follow will be estab-
lished for a class of monotone functions (nonincreasing or nondecreasing), to
preserve the sign of the corresponding inequality.

To simplify our further discussion, we assume that all functions are
rd-continuous, delta differentiable and delta integrable on [a,∞)T; so, these
types of conditions will be omitted.

Our first result is a time scale version of relation (1.5), which is charac-
terized in the same way as in the classical real case.

Theorem 3.1. Let T be a time scale with a ∈ T, let 0 < p ≤ 1 ≤ q, and
let λ, ϕ : [a,∞)T → R, k1, k2 : [a,∞)T × [a,∞)T → R be nonnegative func-
tions. If f : [a,∞)T → R is a nonnegative nonincreasing function such that
lims→∞ f(s) = 0, then the inequality

[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

≤ C

[∫ ∞

a

ϕ(x)
(∫ ∞

a

k2(x, t)f(t)Δt

)p

Δx

] 1
p

, (3.1)

holds if and only if the inequality

[∫ ∞

a

λ(x)

(∫ σ(t)

a

k1(x, τ)Δτ

)q

Δx

] 1
q

≤ C

[∫ ∞

a

ϕ(x)

(∫ σ(t)

a

k2(x, τ)Δτ

)p

Δx

] 1
p

, (3.2)

holds for all t ∈ [a,∞)T.

Proof. The necessity part of Theorem follows by taking

f(t) =
{

1, t ∈ [a, σ(s)]T
0, otherwise,

for any fixed number s ∈ [a,∞)T.

Now, suppose that the inequality (3.2) is valid. Applying Lemma 2.1
with φ(t) = k1(x, t), it follows that

∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

k1(x, τ)Δτ

)
Δt =

∫ ∞

a

f(t)k1(x, t)Δt.

Therefore, the left-hand side of the inequality (3.1) can be rewritten as
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[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

=

[∫ ∞

a

λ(x)

(∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

k1(x, τ)Δτ

)
Δt

)q

Δx

] 1
q

.

(3.3)

On the other hand, utilizing relation (2.14) with

γ = q, w(x) = λ(x), h(t) = [−fΔ(t)] and k(x, t) =
∫ σ(t)

a

k1(x, τ)Δτ,

we obtain the inequality[∫ ∞

a

λ(x)

(∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

k1(x, τ)Δτ

)
Δt

)q

Δx

] 1
q

≤
∫ ∞

a

[−fΔ(t)]

[∫ ∞

a

λ(x)

(∫ σ(t)

a

k1(x, τ)Δτ

)q

Δx

] 1
q

Δt. (3.4)

Hence, relations (3.3) and (3.4) yield the inequality[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

≤
∫ ∞

a

[−fΔ(t)]

[∫ ∞

a

λ(x)

(∫ σ(t)

a

k1(x, τ)Δτ

)q

Δx

] 1
q

Δt. (3.5)

Now, combining the inequalities (3.2) and (3.5), and utilizing the fact that f
is nonincreasing function, we obtain the inequality[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

≤ C

∫ ∞

a

[−fΔ(t)]

[∫ ∞

a

ϕ(x)

(∫ σ(t)

a

k2(x, τ)Δτ

)p

Δx

] 1
p

Δt. (3.6)

Furthermore, yet another application of the inequality (2.14) with

γ = 1/p, w(x) = [−fΔ(x)], h(t) = ϕ(t) and k(x, t) =

(∫ σ(t)

a

k2(x, τ)Δτ

)p

,

yields ⎡
⎣∫ ∞

a

[−fΔ(t)]

[∫ ∞

a

ϕ(x)

(∫ σ(t)

a

k2(x, τ)Δτ

)p

Δx

] 1
p

Δt

⎤
⎦

p

≤
∫ ∞

a

ϕ(x)

(∫ ∞

a

[−fΔ(t)]

[∫ σ(t)

a

k2(x, τ)Δτ

]
Δt

)p

Δx,
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and so ∫ ∞

a

[−fΔ(t)]

[∫ ∞

a

ϕ(x)

(∫ σ(t)

a

k2(x, τ)Δτ

)p

Δx

] 1
p

Δt

≤
[∫ ∞

a

ϕ(x)

(∫ ∞

a

[−fΔ(t)]

[∫ σ(t)

a

k2(x, τ)Δτ

]
Δt

)p

Δx

] 1
p

.

(3.7)

Clearly, combining relations (3.6) and (3.7), we arrive to the inequality[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

≤ C

(∫ ∞

a

ϕ(x)

(∫ ∞

a

[−fΔ(t)]

[∫ σ(t)

a

k2(x, τ)Δτ

]
Δt

)p

Δx

) 1
p

.

(3.8)

Finally, yet another application of Lemma 2.1, this time with φ(t) = k2(x, t),
yields relation∫ ∞

a

[−fΔ(t)]

(∫ σ(t)

a

k2(x, τ)Δτ

)
Δt =

∫ ∞

a

f(t)k2(x, t)Δt,

so the inequality (3.8) becomes[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

≤ C

[∫ ∞

a

ϕ(x)
(∫ ∞

a

k2(x, t)f(t)Δt

)p

Δx

] 1
p

,

as claimed. The proof is complete. �

Remark 3.1. It should be noticed here that if T = R and a = 0, then the
inequality (3.1) reduces to inequality (1.5) established by Heinig and Ma-
ligranda (see also [10]). Another interesting special case of Theorem 3.1 refers
to a classical discrete setting. Namely, if T = N and a = 1, then f(n) is a
nonnegative nonincreasing sequence such that limn→∞ f(n) = 0. Therefore,
if 0 < p ≤ 1 ≤ q, then the inequality[ ∞∑

n=1

λ(n)

( ∞∑
m=1

k1(n,m)f(m)

)q] 1
q

≤ C

[ ∞∑
n=1

ϕ(n)

( ∞∑
m=1

k2(n,m)f(m)

)p] 1
p

,

holds if and only if the inequality[ ∞∑
n=1

λ(n)

(
N∑

m=1

k1(n,m)

)q] 1
q

≤ C

[ ∞∑
n=1

ϕ(n)

(
N∑

m=1

k2(n,m)

)p] 1
p

,

holds for all N ∈ N. Here, λ(n), ϕ(n), k1(n,m), k2(n,m) are nonnegative se-
quences of real numbers.
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The following result is, in some way, complementary to Theorem 3.1,
since it refers to a class of nondecreasing functions.

Theorem 3.2. Let T be a time scale with a ∈ T, let 0 < p ≤ 1 ≤ q, and let
λ, ϕ : [a,∞)T → R, k1, k2 : [a,∞)T × [a,∞)T → R be nonnegative functions.
If f : [a,∞)T → R is a nonnegative nondecreasing bounded function such that
f(a) = 0, then the inequality[∫ ∞

a

λ(x)
(∫ ∞

a

k1(x, t)f(t)Δt

)q

Δx

] 1
q

≤ C

[∫ ∞

a

ϕ(x)
(∫ ∞

a

k2(x, t)fσ(t)Δt

)p

Δx

] 1
p

,

holds if and only if the inequality

[∫ ∞

a

λ(x)

(∫ ∞

t

k1(x, τ)Δτ

)q

Δx

] 1
q

≤ C

[∫ ∞

a

ϕ(x)

(∫ ∞

t

k2(x, τ)Δτ

)p

Δx

] 1
p

,

holds for all t ∈ [a,∞)T.

Proof. The proof is similar to the proof of Theorem 3.1, except that we
use Lemma 2.2 instead of Lemma 2.1, and the fact that f is nondecreasing
function. �

Now, our intention is to establish a time scale version of the Hardy-type
inequality (1.6). Similar to Theorem 3.1, the corresponding generalization
will also be characterized via the appropriate inequality for the accompanying
weight functions.

Theorem 3.3. Let T be a time scale with a ∈ T, let 0 < p ≤ q, 1 ≤ q, and
let λ, ϕ : [a,∞)T → R, k : [a,∞)T × [a,∞)T → R be nonnegative func-
tions. If f : [a,∞)T → R is a nonnegative nonincreasing function such that
lims→∞ f(s) = 0, then the inequality(∫ ∞

a

λ(x)fq(x)Δx

) 1
q

≤ C

[∫ ∞

a

ϕ(τ)
(∫ ∞

a

k(τ, x)f(x)Δx

)p

Δτ

] 1
p

,

(3.9)
holds if and only if the inequality(∫ σ(x)

a

λ(τ)Δτ

) 1
q

≤ C

[∫ ∞

a

ϕ(τ)

(∫ σ(x)

a

k(τ, t)Δt

)p

Δτ

] 1
p

, (3.10)

holds for all x ∈ [a,∞)T.

Proof. The necessity part of Theorem follows by taking

f(t) =
{

1, t ∈ [a, σ(s)]T
0, otherwise,

for any fixed number s ∈ [a,∞)T.
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To prove sufficiency, we start by integrating the term
∫ ∞

a
λ(x)fq(x)Δx.

Namely, utilizing the integration by parts formula with u(x) = fq(x) and
vΔ(x) = λ(x), we have∫ ∞

a

λ(x)fq(x)Δx = fq(x)v(x)|∞a −
∫ ∞

a

[fq(x)]Δ vσ(x)Δx,

where v(x) =
∫ x

a
λ(τ)Δτ. Moreover, since v(a) = 0 and limx→∞ f(x) = 0, it

follows that∫ ∞

a

λ(x)fq(x)Δx =
∫ ∞

a

[−fq(x)]Δ vσ(x)Δx

=
∫ ∞

a

[−fq(x)]Δ
(∫ σ(x)

a

λ(τ)Δτ

)
Δx. (3.11)

Hence, combining relations (3.10) and (3.11), and utilizing the fact that f is
nonincreasing function, we obtain

∫ ∞

a

λ(x)fq(x)Δx ≤ Cq

∫ ∞

a

[−fq(x)]Δ
[∫ ∞

a

ϕ(τ)

(∫ σ(x)

a

k(τ, t)Δt

)p

Δτ

] q
p

Δx,

and consequently,(∫ ∞

a

λ(x)fq(x)Δx

) p
q

≤ Cp

⎛
⎝∫ ∞

a

[−fq(x)]Δ
[∫ ∞

a

ϕ(τ)

(∫ σ(x)

a

k(τ, t)Δt

)p

Δτ

] q
p

Δx

⎞
⎠

p
q

.

(3.12)

Now, applying Lemma 2.5 with γ = q/p, w(x) = [−fq(x)]Δ, h(τ) = ϕ(τ)
and

k(x, τ) =

(∫ σ(x)

a

k(τ, t)Δt

)p

,

to the term⎛
⎝∫ ∞

a

[−fq(x)]Δ
[∫ ∞

a

ϕ(τ)

(∫ σ(x)

a

k(τ, t)Δt

)p

Δτ

] q
p

Δx

⎞
⎠

p
q

,

we obtain the inequality⎛
⎝∫ ∞

a

[−fq(x)]Δ
[∫ ∞

a

ϕ(τ)

(∫ σ(x)

a

k(τ, t)Δt

)p

Δτ

] q
p

Δx

⎞
⎠

p
q

≤
∫ ∞

a

ϕ(τ)

(∫ ∞

a

[−fq(x)]Δ
(∫ σ(x)

a

k(τ, t)Δt

)q

Δx

) p
q

Δτ.

(3.13)
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Clearly, relations (3.12) and (3.13) yield the inequality(∫ ∞

a

λ(x)fq(x)Δx

) p
q

≤ Cp

∫ ∞

a

ϕ(τ)

(∫ ∞

a

[−fq(x)]Δ
(∫ σ(x)

a

k(τ, t)Δt

)q

Δx

) p
q

Δτ.

(3.14)

On the other hand, applying Lemma 2.3 to the term[∫ ∞

a

[−fq(x)]Δ
(∫ σ(x)

a

k(τ, t)Δt

)q

Δx

] 1
q

,

with γ = q, α(x) = [−fq(x)]Δ, β(t) = k2(τ, t), and noting that lims→∞ f(s) =
0, we obtain the inequality[∫ ∞

a

[−fq(x)]Δ
(∫ σ(x)

a

k(τ, t)Δt

)q

Δx

] 1
q

≤
∫ ∞

a

k(τ, x)
(∫ ∞

x

[−fq(s)]Δ Δs

) 1
q

Δx =
∫ ∞

a

k(τ, x)f(x)Δx.

(3.15)

Finally, from the last two relations (3.14) and (3.15), we obtain the inequality(∫ ∞

a

λ(x)fq(x)Δx

) p
q

≤ Cp

∫ ∞

a

ϕ(τ)
[∫ ∞

a

k(τ, x)f(x)Δx

]p

Δτ,

and consequently,(∫ ∞

a

λ(x)fq(x)Δx

) 1
q

≤ C

[∫ ∞

a

ϕ(τ)
(∫ ∞

a

k(τ, x)f(x)Δx

)p

Δτ

] 1
p

,

which proves our assertion. The proof is complete. �

Remark 3.2. If T = R and a = 0, then the inequality (3.9) reduces to the
inequality (1.6), established in [3]. On the other hand, for T = N and a = 1,
the Theorem 3.3 provides the corresponding classical discrete setting. In this
case f(n) is a nonnegative nonincreasing sequence such that limn→∞ f(n) =
0. Therefore, if 0 < p ≤ q and 1 ≤ q, then the inequality( ∞∑

n=1

λ(n)fq(n)

) 1
q

≤ C

[ ∞∑
n=1

ϕ(n)

( ∞∑
m=1

k(n,m)f(m)

)p] 1
p

,

holds if and only if the inequality(
N∑

n=1

λ(n)

) 1
q

≤ C

[ ∞∑
n=1

ϕ(n)

(
N∑

m=1

k(n,m)

)p] 1
p

,

holds for all N ∈ N. Here, λ(n), ϕ(n), k(n,m) are nonnegative sequences of
real numbers.
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To conclude this paper, it remains to establish a version of Theorem 3.3
that corresponds to a class of nondecreasing functions.

Theorem 3.4. Let T be a time scale with a ∈ T, let 0 < p ≤ q, 1 ≤ q, and let
λ, ϕ : [a,∞)T → R, k : [a,∞)T × [a,∞)T → R be nonnegative functions. If
f : [a,∞)T → R is a nonnegative nondecreasing bounded function such that
f(a) = 0, then the inequality(∫ ∞

a

λ(x)fq(x)Δx

) 1
q

≤ C

[∫ ∞

a

ϕ(τ)
(∫ ∞

a

k(τ, x)fσ(x)Δx

)p

Δτ

] 1
p

,

holds if and only if the inequality(∫ ∞

x

λ(τ)Δτ

) 1
q

≤ C

[∫ ∞

a

ϕ(τ)
(∫ ∞

x

k2(τ, t)Δt

)p

Δτ

] 1
p

,

holds for all x ∈ [a,∞)T.

Proof. We follow the lines as in the proof of Theorem 3.3 except that we
use Lemma 2.4 instead of Lemma 2.3, and the fact that f is nondecreasing
function. �
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